Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015582

RESUMO

This study aimed to optimize the removal of Cu(II) ions from an aqueous solution using a Jatropha oil bio-based membrane blended with 0.50 wt% graphene oxide (JPU/GO 0.50 wt%) using a central composite model (CCD) design using response surface methodology. The input factors were the feed concentration (60-140) ppm, pressure (1.5-2.5) bar, and solution pH value (3-5). An optimum Cu(II) ions removal of 87% was predicted at 116 ppm feed concentration, 1.5 bar pressure, and pH 3.7, while the validated experimental result recorded 80% Cu(II) ions removal, with 95% of prediction intervals. A statistically non-significant term was removed from the analysis by the backward elimination method to improve the model's accuracy. Using the reduction method, the predicted R2 value was increased from -0.16 (-16%) to 0.88 (88%), suggesting that the reduced model had a good predictive ability. The quadratic regression model was significant (R2 = 0.98) for the optimization prediction. Therefore, the results from the reduction model implied acceptable membrane performance, offering a better process optimization for Cu(II) ions removal.

2.
ACS Omega ; 6(6): 4137-4146, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33644536

RESUMO

Despite the advantages of continuous fermentation whereby ethanol is selectively removed from the fermenting broth to reduce the end-product inhibition, this process can concentrate minor secondary products to the point where they become toxic to the yeast. This study aims to develop a new mathematical model do describe the inhibitory effect of byproducts on alcoholic fermentation including glycerol, lactic acid, acetic acid, and succinic acid, which were reported as major byproducts during batch alcoholic fermentation. The accumulation of these byproducts during the different stages of batch fermentation has been quantified. The yields of total byproducts, glycerol, acetic acid, and succinic acid per gram of glucose were 0.0442, 0.023, 0.0155, and 0.0054, respectively. It was found that the concentration of these byproducts linearly increases with the increase in glucose concentration in the range of 25-250 g/L. The results have also showed that byproduct concentration has a significant inhibitory effect on specific growth coefficient (µ) whereas no effect was observed on the half-velocity constant (K s). A new mathematical model of alcoholic fermentation was developed considering the byproduct inhibitory effect, which showed a good performance and more accuracy compared to the classical Monod model.

3.
Materials (Basel) ; 13(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516968

RESUMO

Heat explosions are sometimes observed during the synthesis of phenol formaldehyde (PF) resin. This scenario can be attributed to the high latent heat that was released and not dissipated leading to the occurrence of a runaway reaction. The synthesis temperature and time played important roles in controlling the heat release, hence preventing the resin from hardening during the synthesis process. This study aims to assess the rheological and viscoelasticity behaviors of the PF resin prepared using paraformaldehyde. The prepared PF resin was designed for laminate applications. The rheological behavior of the PF resin was assessed based on the different molar ratios of phenol to paraformaldehyde (P:F) mixed in the formulation. The molar ratios were set at 1.00:1.25, 1.00:1.50 and 1.00:1.75 of P to F, respectively. The rheological study was focused at specific synthesis temperatures, namely 40, 60, 80 and 100 °C. The synthesis time was observed for 240 min; changes in physical structure and viscosity of the PF resins were noted. It was observed that the viscosity values of the PF resins prepared were directly proportional to the synthesis temperature and the formaldehyde content. The PF resin also exhibited shear thickening behavior for all samples synthesized at 60 °C and above. For all PF resin samples synthesized at 60 °C and above, their viscoelasticity results indicated that the storage modulus (G'), loss modulus(G″) and tan δ are proportionally dependent on both the synthesis temperature and the formaldehyde content. Heat explosions were observed during the synthesis of PF resin at the synthesis temperature of 100 °C. This scenario can lead to possible runaway reaction which can also compromise the safety of the operators.

4.
Polymers (Basel) ; 12(3)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138186

RESUMO

This study focused on developing a hydrophilic hybrid polyvinylidene fluoride (PVDF)-polyethylene glycol (PEG) hollow membrane by incorporating Nano-magnesium oxide (NMO) as a potent antifouling mediator. The Nano-hybrid hollow fibers with varied loading of NMO (0 g; 0.25 g; 0.50 g; 0.75 g and 1.25 g) were spun through phase inversion technique. The resultants Nano-hybrid fibers were characterized and compared based on SEM, EDX, contact angle, surface zeta-potential, permeability flux, fouling resistance and color rejection from palm oil mill effluent (POME). Noticeably, the permeability flux, fouling resistance and color rejection improved with the increase in NMO loading. PVDF-PEG with 0.50 g-NMO loading displayed an outstanding performance with 198.35 L/m2·h, 61.33 L/m2·h and 74.65% of water flux, POME flux and color rejection from POME, respectively. More so, a remarkable fouling resistance were obtained such that the flux recovery, reversible fouling percentage and irreversible fouling percentage remains relatively steady at 90.98%, 61.39% and 7.68%, respectively, even after 3 cycles of continuous filtrations for a total period of 9 h. However, at excess loading of 0.75 and 1.25 g-NMO, deterioration in the flux and fouling resistance was observed. This was due to the agglomeration of nanoparticles within the matrix structure at the excessive loading.

5.
Nanomaterials (Basel) ; 10(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059384

RESUMO

The materials and substances required for sustainable water treatment by adsorption technique, are still being researched widely by distinguished classes of researchers. Thus, the need to synthesize substances that can effectively clean up pollutants from the environment cannot be overemphasized. So far, materials in bulk forms that are rich in carbon, such as biochar and varieties of activated carbon have been used for various adsorptive purposes. The use of bulk materials for such purposes are not efficient due to minimal surface areas available for adsorption. This study explores the adsorption task at nano dimension using carbon dots (CDs) from tapioca. The properties of carbon structure and its influence on the adsorptive efficacy of carbon nanoparticles were investigated by energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), high resolution transmission electron microscopy (HrTEM), and atomic force microscopy (AFM). The results implied carbon present in CDs are good adsorbents for effective adsorption of heavy metal ions (lead) with removal efficiency of 80.6% in aqueous environment. The adsorption process as explored by both Langmuir and Freundlich isotherms have proven favorability of the adsorption process. Langmuir form two and three have correlation coefficients R2 at 0.9922 and 0.9912, respectively. The Freundlich isotherm confirms CDs as having defined surface heterogeneity and the exponential distribution of active sites. The adsorption of lead unto CDs obeyed the second order kinetic model with coefficient of determination, R2 of 0.9668 and 0.9996 at an initial lead concentration of 20 mg/L and 100 mg/L, respectively. The findings validated the efficiency of CDs derived from tapioca as an excellent material for further utilization in the environmental fields of wastewater pollution detection and clean up, bio-imaging, and chemical sensing applications.

6.
Biomolecules ; 9(8)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357463

RESUMO

Modelling has recently become a key tool to promote the bioethanol industry and to optimise the fermentation process to be easily integrated into the industrial sector. In this context, this study aims at investigating the applicability of two mathematical models (Andrews and Monod) for molasses fermentation. The kinetics parameters for Monod and Andrews were estimated from experimental data using Matlab and OriginLab software. The models were simulated and compared with another set of experimental data that was not used for parameters' estimation. The results of modelling showed that µmax = 0.179 1/h and Ks = 11.37 g.L-1 for the Monod model, whereas µmax = 0.508 1/h, Ks = 47.53 g.L-1 and Ki = 181.01 g.L-1 for the Andrews model, which are too close to the values reported in previous studies. The validation of both models showed that the Monod model is more suitable for batch fermentation modelling at a low concentration, where the highest R squared was observed at S0 = 75 g.L-1 with an R squared equal to 0.99956, 0.99954, and 0.99859 for the biomass, substrate, and product concentrations, respectively. In contrast, the Andrews model was more accurate at a high initial substrate concentration and the model data showed a good agreement compared to the experimental data of batch fermentation at S0 = 225 g.L-1, which was reflected in a high R squared with values 0.99795, 0.99903, and 0.99962 for the biomass, substrate, and product concentrations respectively.


Assuntos
Etanol/metabolismo , Melaço/microbiologia , Técnicas de Cultura Celular por Lotes , Fermentação , Modelos Biológicos
7.
Biosensors (Basel) ; 9(1)2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30875829

RESUMO

This paper describes the development of an integrated system using a dry film resistant (DFR) microfluidic channel consisting of pulsed field dielectrophoretic field-flow-fractionation (DEP-FFF) separation and optical detection. The prototype chip employs the pulse DEP-FFF concept to separate the cells (Escherichia coli and Saccharomyces cerevisiae) from a continuous flow, and the rate of release of the cells was measured. The separation experiments were conducted by changing the pulsing time over a pulsing time range of 2⁻24 s and a flow rate range of 1.2⁻9.6 µ L min - 1 . The frequency and voltage were set to a constant value of 1 M Hz and 14 V pk-pk, respectively. After cell sorting, the particles pass the optical fibre, and the incident light is scattered (or absorbed), thus, reducing the intensity of the transmitted light. The change in light level is measured by a spectrophotometer and recorded as an absorbance spectrum. The results revealed that, generally, the flow rate and pulsing time influenced the separation of E. coli and S. cerevisiae. It was found that E. coli had the highest rate of release, followed by S. cerevisiae. In this investigation, the developed integrated chip-in-a lab has enabled two microorganisms of different cell dielectric properties and particle size to be separated and subsequently detected using unique optical properties. Optimum separation between these two microorganisms could be obtained using a longer pulsing time of 12 s and a faster flow rate of 9.6 µ L min - 1 at a constant frequency, voltage, and a low conductivity.


Assuntos
Separação Celular/métodos , Escherichia coli/citologia , Tecnologia de Fibra Óptica/métodos , Microfluídica/métodos , Saccharomyces cerevisiae/citologia , Separação Celular/instrumentação , Tecnologia de Fibra Óptica/instrumentação , Microfluídica/instrumentação
8.
Artigo em Inglês | MEDLINE | ID: mdl-30304814

RESUMO

Palm oil mill effluent contains carcinogenic coloured compounds that are difficult to separate due to their aromatic structure. Though colour treatment using adsorption processes at lower pH (<4) have been reported effectual, due to its acidity the remediated effluent poses an environmental hazard as a result. Thus, the current study focused on achieving decolourization at neutral pH by enhancing the morphology of the coconut shell activated carbon (CSAC) using N2 as activating-agent with microwave irradiation heating. The microwave pretreated and non-pretreated CSAC were characterized using scanned electron microscopy (SEM), energy dispersive X-ray (EDX) and Brunauer-Emmett-Teller (BET) analysis. A significant modification in the porous structure with a 66.62% increase in the specific surface area was achieved after the pretreatment. The adsorption experimental matrix was developed using the central composite design to investigate the colour adsorption performance under varied pH (6⁻7), dosage (2⁻6 g) and contact time (10⁻100 min). At optimum conditions of neutral pH (7), 3.208 g dosage and contact time of 35 min, the percentage of colour removal was 96.29% with negligible differences compared with the predicted value, 95.855%. The adsorption equilibrium capacity of 1430.1 ADMI × mL/g was attained at the initial colour concentration of 2025 ADMI at 27 °C. The experimental data fitted better with the Freundlich isotherm model with R² 0.9851.


Assuntos
Cocos/química , Micro-Ondas , Óleo de Palmeira , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Carvão Vegetal/química , Ecossistema , Instalações Industriais e de Manufatura , Óleo de Palmeira/química , Fotossíntese
9.
Asian J Surg ; 40(2): 158-162, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24210537

RESUMO

Arteriovenous malformations are congenital lesions that may evolve with time and manifest in a plethora of presentations. They can occur as torrential epistaxis when it extensively involves the facial region. Multi-imaging modalities are available to assist in characterizing the structure of the lesion as well as its location and extent. This complex disease requires a multidisciplinary team approach with preoperative embolization and surgery. We present a rare cause of life-threatening epistaxis in a gentleman with a longstanding orbital and hemifacial arteriovenous malformation and discuss the complexities involved in its management.


Assuntos
Malformações Arteriovenosas/terapia , Artéria Carótida Primitiva/anormalidades , Angiografia Cerebral/métodos , Epistaxe/diagnóstico , Procedimentos de Cirurgia Plástica/métodos , Adulto , Malformações Arteriovenosas/complicações , Malformações Arteriovenosas/diagnóstico por imagem , Artéria Carótida Primitiva/diagnóstico por imagem , Artéria Carótida Interna/anormalidades , Artéria Carótida Interna/diagnóstico por imagem , Terapia Combinada , Edema/diagnóstico , Edema/etiologia , Embolização Terapêutica/métodos , Epistaxe/etiologia , Exoftalmia/diagnóstico , Exoftalmia/etiologia , Doenças Palpebrais/diagnóstico , Doenças Palpebrais/etiologia , Seguimentos , Humanos , Angiografia por Ressonância Magnética/métodos , Masculino , Órbita/irrigação sanguínea , Exenteração Orbitária/métodos , Medição de Risco , Índice de Gravidade de Doença , Retalhos Cirúrgicos/irrigação sanguínea , Retalhos Cirúrgicos/transplante , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...